

ІІІІІІ ПРИЧИНЫ ИНЦИДЕНТОВ В ДАТА-ЦЕНТРАХ

Источник: по данным Uptime Institute, 2020

Основные причины инцидентов, приводящих к нарушению работы ИТ-сервисов

Надежность СБЭП и СГЭП - важнейшее условие беспрерывного предоставления ИТ-сервисов

Источник: по данным Ponemon Institute, Vertiv

Основные причины незапланированных перерывов и простоев в работе ЦОДов

Нарушение работы АКБ - основной источник перебоев и незапланированных отключений в ЦОДах

Октября 2022 г. Пожар в ЦОД SK Group (Ю. Корея)

Пожар начался в комнате с АКБ, затем распространился на остальную часть здания

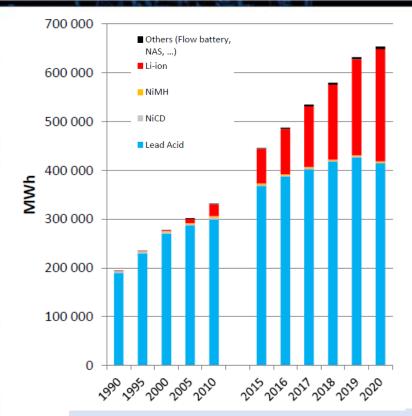
Пожарным потребовалось около 8 ч, чтобы взять пламя под контроль.

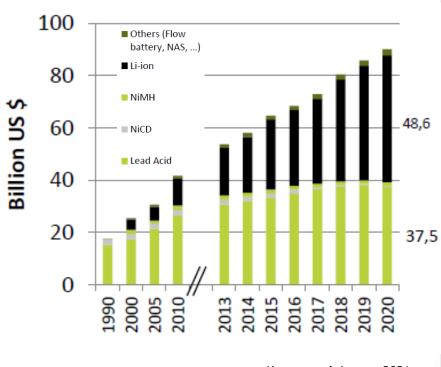
Авария вывела из строя десятки тысяч серверов, включая

- собственные системы SK Group
- инфраструктуру самого популярного южнокорейского мессенджера KakaoTalk
- инфраструктуру облачного гиганта Naver («южнокорейский Google»)

Создание нац. целевой группы по предотвращению аварий и катастроф с участием военных чиновников и нац. разведывательного управления

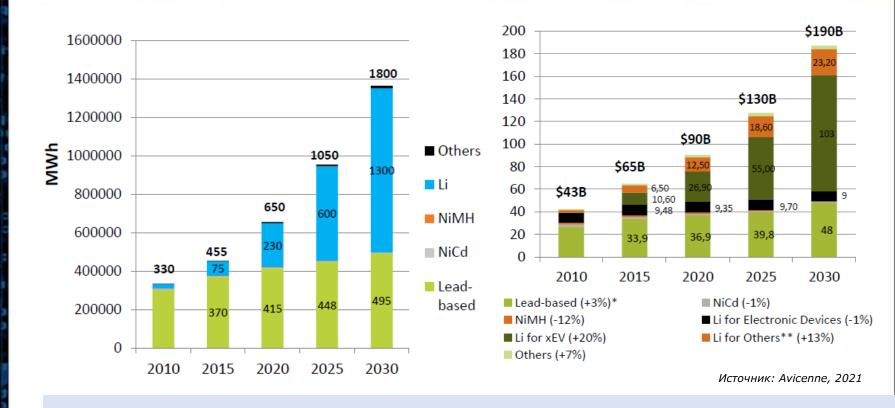
Со специальным заявлением выступил президент страны Юн Сок Ель (пообещал провести тщательное расследование причин пожара)

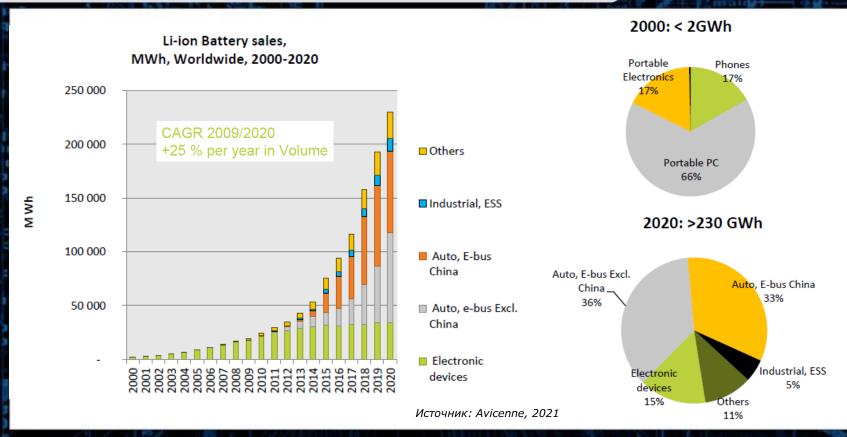



2021 г. Пожар в дата-центре OVHcloud (Страсбург, Франция)

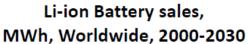
- В инциденте пострадали около 65 000 клиентов, многие из них потеряли свои данные
- Предполагается, что причина пожара система бесперебойного питания.

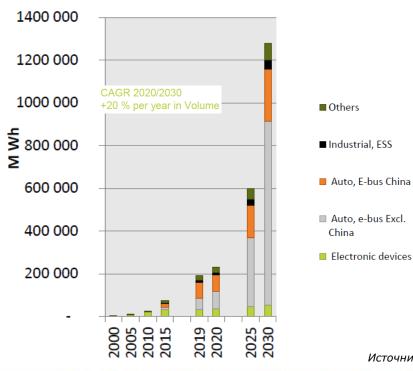
По данным Французского бюро расследований и анализа промышленных рисков (BEA-RI), распространению пожара способствовало отсутствие автоматической системы огнетушения, несвоевременное отключение электричества и особенности конструкции здания.

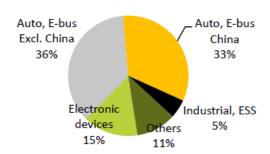


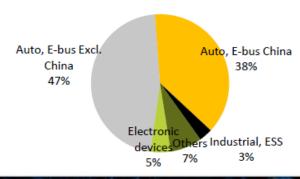

Источник: Avicenne, 2021

По общей емкости лидером остаются СК АКБ, но ЛИ АКБ уже опережают их по объему продаж. ЛИ АКБ чаще используются в приборах бытовой электроники, а СК АКБ – в «тяжелых» приложениях: стартовые батареи автомобилей, промышленные системы


!!!!!!!!!!! РЫНОК АКБ (ПЕРСПЕКТИВЫ)

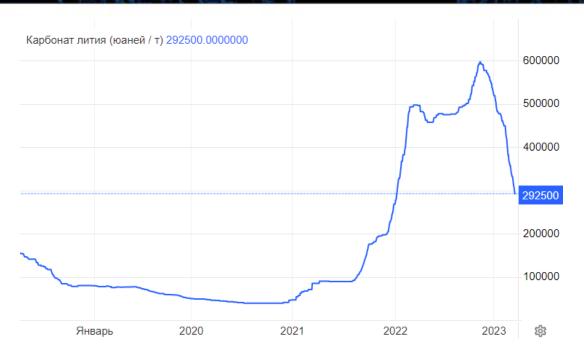


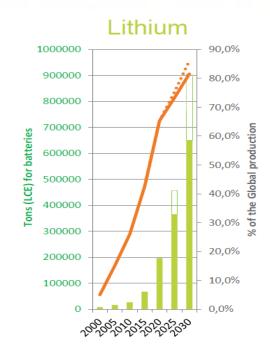




2020: >230 GWh

2030: 1300 GWh




ІІІІІІ ДИНАМИКА СТОИМОСТИ ЛИ АКБ

В 2020 г. Bloomberg New Energy Finance прогнозировал, что к 2030 г. цена ЛИ АКБ упадет еще минимум вдвое – до \$0,6/Вт*ч. Но начались «американские горки»

!!!!!! ДИНАМИКА СТОИМОСТИ ЛИТИЯ

Источник: tradingeconomics.com

Источник: Avicenne, 2021

В ноябре 2022 г. исторический максимум -\$595 500 за тонну карбоната лития

!!!!!! ДИНАМИКА СТОИМОСТИ СВИНЦА

Источник: tradingeconomics.com

Литий

Запасы ∼80 млн т.

Добыча ~ 80 тыс. т (в год)

60% - Австралия

20% - Чили

10% - Китай

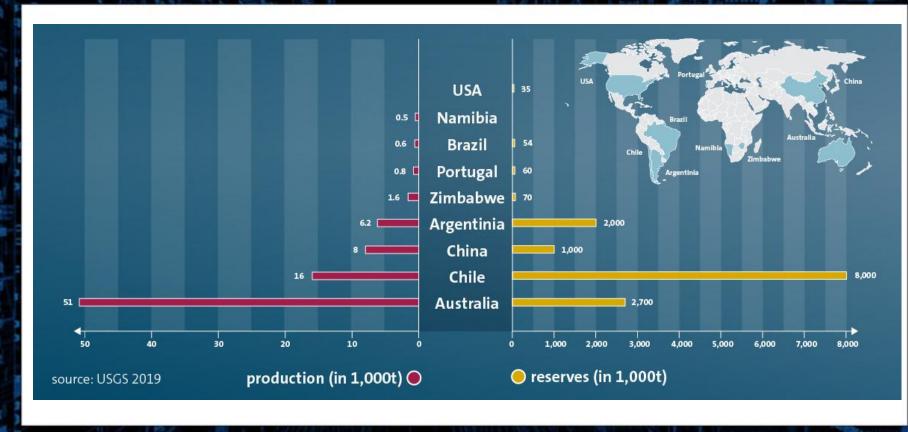
7% - Аргентина

3% - остальные

90% производства литиевых прекурсоров сосредоточено в Китае

Кобальт

Запасы ~12,7 млн т.


Добыча ~ 114 тыс. т (в год)

> 65% - ДР Конго 35% - остальные с долей менее 10%

Весь конголезский кобальт перевозится в Китай для дальнейшей обработки и обогащения

Кратное увеличение оборотов сырья, необходимого для производства АКБ, может спровоцировать дефицит предложения (кобальта, лития и графита)

ШИЛИТИТЕ ДЛЯ ЛИ АКБ

ІІІІІІ ДЛЯ ЛИ АКБ

Больше 20 лет Россия не добывала литий, предпочитая более дешевый импорт

С 1941 по 1997 гг. в Красноярском крае работал единственный в России литиевый рудник (Завитинское месторождение). Концентрат перерабатывался Красноярским химико-металлургическим заводом (КХМЗ). В советские годы отработали 40% запасов месторождения, а в 1997 г. его законсервировали.

Запасы лития в России оцениваются в 1 млн т

ІІІІІІ ДЛЯ ЛИ АКБ

Литий

В феврале 2022 г. «Газпром», «Иркутская нефтяная компания» и Минпромторг подписали «дорожную карту» по реализации проекта по производству соединений лития из минерализованных подземных вод Ковыктинского газоконденсатного месторождения «Газпрома» (Иркутская обл.)

В апреле 2022 г. «Норникель» объявил о намерении создать СП с «Росатомом» по освоению литиевого месторождения Колмозерское (Мурманская обл.) и дальнейшей глубокой переработке литиевого сырья.

О намерении организовать производства карбоната лития объявил министр промышленности Дагестана Низам Халилов. Он сказал, что в республике есть 3 крупных месторождения лития, на самом большом из них, Южно-Сухокумском можно добывать 5-6 тыс. тонн соединений лития в год.

Эти проекты не могут быть реализованы быстро. Необходимы разработка технологий переработки литиевого сырья, строительство горнодобывающих предприятий, создание транспортной и энергетической инфраструктуры.

Источник: batteryuniversity.com

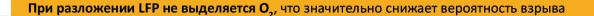
Источник: batteryuniversity.com

По совокупности характеристик для ИКТ наилучшие варианты:

NMC – литий-никель-марганец-кобальтовые

LFP - литий-железо-фосфатные

ПППППП БЕЗОПАСНОСТЬ


Совершенствование хим. состава, материалов, процессов разработки, производства и тестирования

Пассивный слой внутри ячейки останавливает хим. реакцию при критическом нагреве

Встроенная аппаратная защита от перезаряда – когда напряжение превышает критическое значение, цепь размыкается и процесс зарядки останавливается

Нормальная зарядка

Перезаряд/тепловой разгон

Источник: Huawei

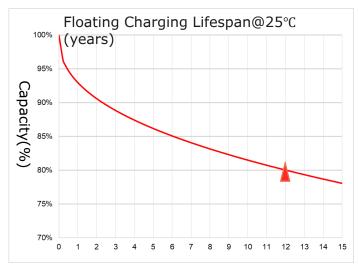
Массогабаритные характеристики вес меньше примерно вдвое, занимаемая площадь – на 70%

Экономия площади 70%, дополнительно 14 ИТ-стоек

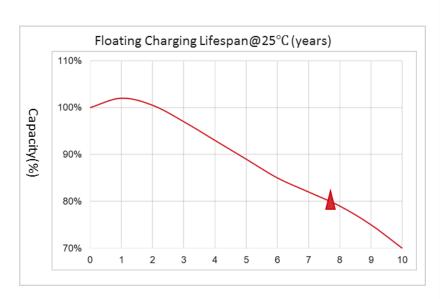
СК АКБ 11,2 кв. м

ЛИ АКБ **3,06 кв. м**

Нагрузка 800 кВт, время автономии 15 мин



■■■■■ ПРЕИМУЩЕСТВА ЛИ АКБ (vs СК АКБ)



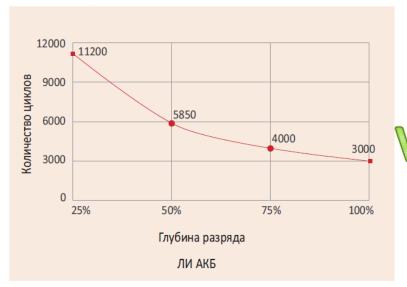
Срок службы

кратно больше -- способны через 15 лет сохранить более 70% своей емкости (при 25^оС и непрерывном подзаряде ЛИ АКБ). Для СК АКБ этот показатель – 7-10 лет

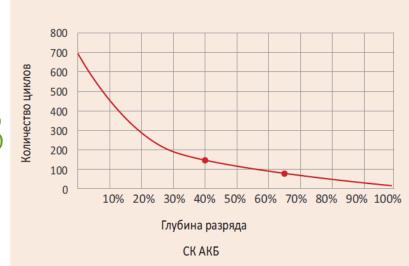
VS

ЛИ АКБ

СК АКБ



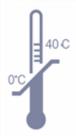
■■■■■■■■■■ ПРЕИМУЩЕСТВА ЛИ АКБ (vs СК АКБ)



Циклический ресурс

число циклов разряда-заряда больше примерно в 20 раз (при глубине разряда 100%)

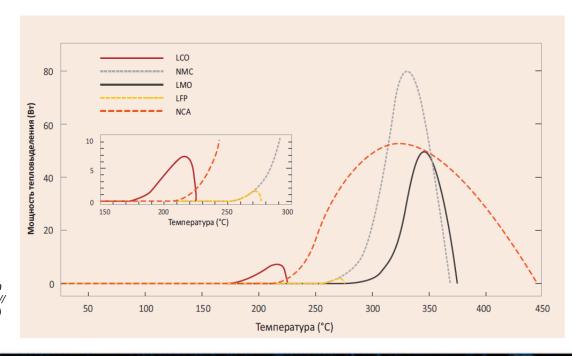
■■■■■■■ ПРЕИМУЩЕСТВА ЛИ АКБ (vs СК АКБ)


Величина саморазряда

Этот показатель характеризует разряд батареи, когда она не используется. Для ЛИ АКБ он составляет 1–2%, а у свинцово-кислотных может доходить до 5% в месяц

Время заряда

Литий-ионные АКБ заряжаются не более 3 ч. Для свинцово-кислотных батарей этот показатель доходит до 15 ч. Меньшее время заряда играет важную роль в случае частых сбоев электропитания.



Температурный режим эксплуатации менее строгий (приемлема температура от 0 до 40 град. C)

Для применения в ЦОДах важное значение имеет тепловыделение аккумуляторов. Среди всех типов ЛИ АКБ наименьшее тепловыделение имеют аккумуляторы LFP

Источник: P. Peng, F. Jiang // Thermal safety of lithium-ion batteries with various cathode materials: A numerical study // International Journal of Heat and Mass Transfer. 103 (2016) 1008-1016

■■■■■■■■■■■ ПРЕИМУЩЕСТВА ЛИ АКБ (vs СК АКБ)

Мониторинг состояния

обязательная функция (для СК АКБ – дополнительная опция)

VS

||||||||||||| ПРЕИМУЩЕСТВА ЛИ АКБ -- КОРП. ЦОД

- Возможность установки в небольших по площади и неспециализированных помещениях
- Малые вес и размер, упрощающие транспортировку и установку
- □ Большой срок службы (уменьшает необходимость замены, сложной в офисных зданиях)
- □ Более простое обеспечение длительного времени автономной работы в инсталляциях без ДГУ

|||||||||||| ПРЕИМУЩЕСТВА ЛИ АКБ -- COLO ЦОД

- Компактность позволяет изначально запроектировать помещения под АКБ меньшего размера и увеличить площадь машинных залов
- Хорошая управляемость (встроенная система мониторинга)

|||||||| ПРЕИМУЩЕСТВА ЛИ АКБ - EDGE-ЦОД

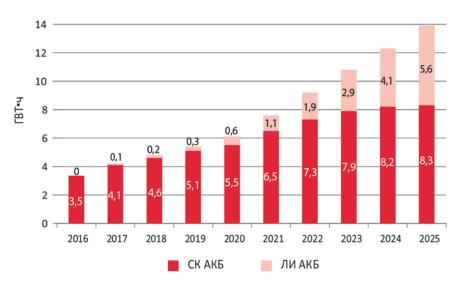
- □ Компактность, упрощающая размещение в небольших модулях
- Малые вес и размер, упрощающие транспортировку
- Возможность установки в неподготовленных помещениях
- Более простое обеспечение длительного времени автономной работы в инсталляциях без ДГУ
- Хорошая управляемость (встроенная система мониторинга), в том числе для дистанционной эксплуатации

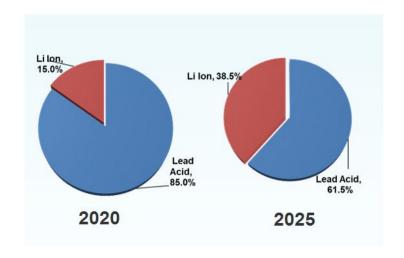
|||||||| БАРЬЕРЫ ДЛЯ ЛИ АКБ

- Высокий САРЕХ + стремительный рост (резкое колебание) цен на основное сырье для ЛИ АКБ
- □ Резкое сужение конкурентного поля в России
- Фобии, связанные с безопасностью (слабая информированность о решении этих проблем)
- □ Опасения, связанные с ограниченными запасами (доступностью) основных материалов, используемых в ЛИ АКБ
- □ Отсутствие выстроенной системы утилизации

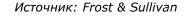
ПППП ПЕРСПЕКТИВЫ ЛИ АКБ В ЦОДАХ

Рост спроса на накопители энергии

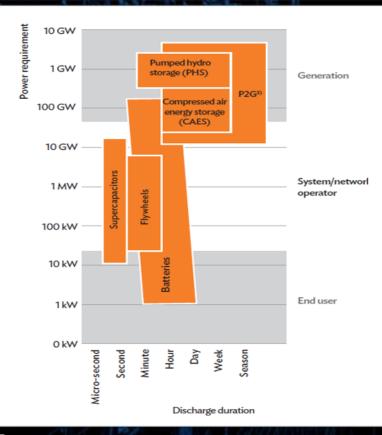

Уменьшение зависимости от традиционных ДГУ



Развитие edge-инфраструктуры



Дальнейшее снижение стоимости ЛИ АКБ



Источник: по данным Bloomberg New Energy Finance

ІІІІ АЛЬТЕРНАТИВНЫЕ ВАРИАНТЫ

- Аккумуляторные батареи
- Суперконденсаторы
- Маховики

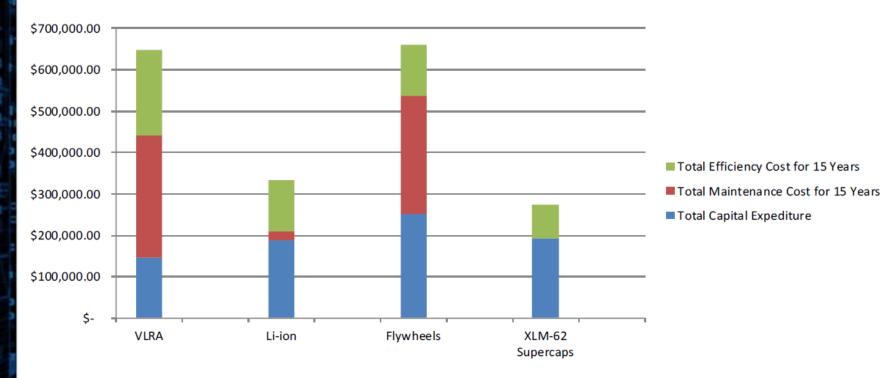
Источник: ROLAND BERGER GMBH (2017). R. Berger, "Business models in energy storage - Energy Storage can bring utilities back into the game

ІІІІІ АЛЬТЕРНАТИВНЫЕ ВАРИАНТЫ

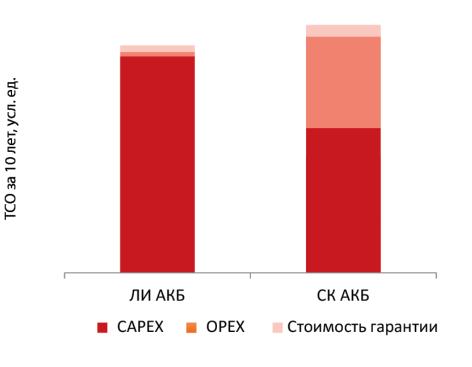
Характеристика	Суперконденсатор	СК АКБ	ЛИ АКБ
Напряжение, В	48-62	12-24	12-24
Мин. t эксплуатации, град. С	-40	-20	-20
Макс. t эксплуатации, град. С	+75 (80)	+40	+45
Число циклов	Более 1 млн 300		10 тыс.
Срок эксплуатации, лет	5-20	0,5-5	3-10
Плотность энергии, Вт-ч/л	1-10	100-290	250-650
Плотность мощности, Вт/л	1000-10 000	100-1000	850-3000
КПД, %	>98	~70	80-90
Время разряда	Секунды или минуты	Часы	Часы

Источник: Eaton

ППП АЛЬТЕРНАТИВНЫЕ ВАРИАНТЫ


Характеристика	Суперконденсатор (20 блоков)	ЛИ АКБ	Маховик
Диапазон напряжения, В (DC)	570 to 360	538 to 410	520 to 400
Температурный диапазон, град. С	-40 to +65	+18 to +28	-10 to +40
Макс. мощность, кВт	300	150	300
Запасенная энергия, кВт·ч	1.39	32.6	1.67
Срок службы, лет*	20	15	20
Размер (ШхДхВ), см	62 x 85 x 213	65 x 60 x 229	76 x 76 x 187
Вес, кг	550	550	760

*эксплуатация при температуре +28°C


!!!!! АЛЬТЕРНАТИВНЫЕ ВАРИАНТЫ

ІІІІІІІ тсо. типичный корп. цод

мощность нагрузки 200 кВт (40 стоек по 5 кВт)

время автономии от АКБ - 10 мин

стоимость аренды помещения за 10 лет – 1000 \$/кв. м.

Источник: iKS-Consulting, Huawei

АЛЬТЕРНАТИВНЫЕ ВАРИАНТЫ: NI-ZN

Никель-цинковые (Ni-Zn) АКБ в сравнении со свинцовыми:

- До 63% меньше занимаемая площадь.
- До 60% меньше нагрузка на пол.
- До 197% (194%) выше удельная мощность по весу (объему)

Высокая надежность. Выход из строя элемента ЛИ или СК АКБ приводит к разрыву цепи, слабая ячейка батареи Ni-Zn остается проводящей

Длительный срок службы, простое обслуживания

Экологичность и безопасность. Не горят. В составе нет опасных кислот и газов

Источник: ZincFive

Эффективно работают в диапазоне температур: от -40 до +43 °C

Недостаток -- повышенная скорость саморазряда после 30–50 циклов: такие батареи, бывшие в эксплуатации, не держат заряд так долго, как новые.

| АЛЬТЕРНАТИВНЫЕ ВАРИАНТЫ: SIB/NIB

Натрий -- наиболее перспективная замена литию

Сходство принципов работы НИ и ЛИ АКБ позволяет задействовать уже существующие линии производства

Разработка НИ АКБ началась в 70-е годы (как и ЛИ), но коммерческие перспективы лучше выглядели у ЛИ АКБ

Когда сфера применения ЛИ АКБ начала включать энергоемкие приложения (э-мобили, СБП и хранения энергия), стало ясно: нужна более дешевая альтернатива с доступной базой исходного сырья.

Хотя НИ АКБ дешевле ЛИ, по массогабаритным характеристикам уступает последнему

Натрий-ионный АКБ -sodium-ion battery (NIB or SIB)

